ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Окружность с центром I касается сторон AB , BC , AC неравнобедренного треугольника ABC в точках C1 , A1 , B1 соответственно. Окружности ωB и ωC вписаны в четырехугольники BA1IC1 и CA1IB1 соответственно. Докажите, что общая внутренняя касательная к ωB и ωC , отличная от IA1 , проходит через точку A . Решение |
Страница: << 1 2 [Всего задач: 8]
В королевстве N городов, некоторые пары которых соединены непересекающимися дорогами с двусторонним движением (города из такой пары называются соседними). При этом известно, что из каждого города можно доехать до любого другого, но невозможно, выехав из некоторого города и двигаясь по различным дорогам, вернуться в исходный город.
Даны натуральные числа x и y из отрезка [2, 100]. Докажите, что при некотором натуральном n число x2n + y2n – составное.
Страница: << 1 2 [Всего задач: 8] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|