ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Окружность с центром  I касается сторон  AB , BC , AC неравнобедренного треугольника  ABC в точках C1 , A1 , B1 соответственно. Окружности  ωB и  ωC вписаны в четырехугольники  BA1IC1 и  CA1IB1 соответственно. Докажите, что общая внутренняя касательная к  ωB и  ωC , отличная от  IA1 , проходит через точку  A .

   Решение

Задачи

Страница: << 1 2 [Всего задач: 8]      



Задача 115409  (#06.4.10.6)

Темы:   [ Обход графов ]
[ Индукция (прочее) ]
[ Перестановки и подстановки (прочее) ]
Сложность: 5-
Классы: 9,10,11

  В королевстве N городов, некоторые пары которых соединены непересекающимися дорогами с двусторонним движением (города из такой пары называются соседними). При этом известно, что из каждого города можно доехать до любого другого, но невозможно, выехав из некоторого города и двигаясь по различным дорогам, вернуться в исходный город.
  Однажды Король провел такую реформу: каждый из N мэров городов стал снова мэром одного из N городов, но, возможно, не того города, в котором он работал до реформы. Оказалось, что каждые два мэра, работавшие в соседних городах до реформы, оказались в соседних городах и после реформы. Докажите, что либо найдётся город, в котором мэр после реформы не поменялся, либо найдётся пара соседних городов, обменявшихся мэрами.

Прислать комментарий     Решение

Задача 115410  (#06.4.10.7)

Темы:   [ Общая касательная к двум окружностям ]
[ Две касательные, проведенные из одной точки ]
[ Метод ГМТ ]
[ ГМТ - окружность или дуга окружности ]
Сложность: 6-
Классы: 9,10,11

Окружность с центром  I касается сторон  AB , BC , AC неравнобедренного треугольника  ABC в точках C1 , A1 , B1 соответственно. Окружности  ωB и  ωC вписаны в четырехугольники  BA1IC1 и  CA1IB1 соответственно. Докажите, что общая внутренняя касательная к  ωB и  ωC , отличная от  IA1 , проходит через точку  A .
Прислать комментарий     Решение


Задача 115411  (#06.4.10.8)

Темы:   [ Малая теорема Ферма ]
[ Арифметика остатков (прочее) ]
Сложность: 4+
Классы: 9,10,11

Даны натуральные числа x и y из отрезка  [2, 100].  Докажите, что при некотором натуральном n число x2n + y2n  – составное.

Прислать комментарий     Решение

Страница: << 1 2 [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .