ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Существуют ли два таких четырехугольника, что стороны первого меньше соответствующих сторон второго, а соответствующие диагонали больше?

   Решение

Задачи

Страница: 1 2 3 >> [Всего задач: 12]      



Задача 116078

Темы:   [ Геометрия на клетчатой бумаге ]
[ Примеры и контрпримеры. Конструкции ]
[ Параллелограммы: частные случаи (прочее) ]
Сложность: 2+
Классы: 8,9

Автор: Фольклор

На рисунке изображен параллелограмм и отмечена точка P пересечения его диагоналей. Проведите через P прямую так, чтобы она разбила параллелограмм на две части, из которых можно сложить ромб.

Прислать комментарий     Решение

Задача 116084

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Четырехугольники (прочее) ]
Сложность: 2+
Классы: 10,11

Существуют ли два таких четырехугольника, что стороны первого меньше соответствующих сторон второго, а соответствующие диагонали больше?
Прислать комментарий     Решение


Задача 116079

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Метод координат на плоскости ]
Сложность: 3
Классы: 8,9

Квадрат и прямоугольник одинакового периметра имеют общий угол. Докажите, что точка пересечения диагоналей прямоугольника лежит на диагонали квадрата.

Прислать комментарий     Решение

Задача 116085

Темы:   [ Перегруппировка площадей ]
[ Трапеции (прочее) ]
[ Параллелограммы (прочее) ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 3
Классы: 10,11

Трапеция ABCD и параллелограмм MBDK расположены так, что стороны параллелограмма параллельны диагоналям трапеции (см. рис.). Докажите, что площадь серой части равна сумме площадей черных частей.

Прислать комментарий     Решение

Задача 116080

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC  AA1 и BB1 – высоты. На стороне AB выбраны точки M и K так, что  B1K || BC  и  MA1 || AC.  Докажите, что  ∠AA1K = ∠BB1M.

Прислать комментарий     Решение

Страница: 1 2 3 >> [Всего задач: 12]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .