ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В треугольнике ABC на стороне AB выбраны точки K и L так, что AK = BL, а на стороне BC — точки M и N так, что CN = BM. Докажите, что KN + LMAC.

   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 116184  (#1)

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Прямые и кривые, делящие фигуры на равновеликие части ]
Сложность: 2+
Классы: 8,9

Автор: Фольклор

В шестиугольнике пять углов по 90°, а один угол — 270° (см. рисунок). C помощью линейки без делений разделите его на два равновеликих многоугольника.

Прислать комментарий     Решение

Задача 116185  (#2)

Темы:   [ Признаки и свойства параллелограмма ]
[ Равные треугольники. Признаки равенства (прочее) ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 2+
Классы: 8,9

Дан параллелограм ABCD. Прямая, параллельная AB, пересекает биссектрисы углов A и C в точках P и Q соответственно.
Докажите, что углы ADP и ABQ равны.

Прислать комментарий     Решение

Задача 116186  (#3)

Темы:   [ Векторы помогают решить задачу ]
[ Неравенства с векторами ]
[ Неравенство треугольника (прочее) ]
[ Параллелограммы (прочее) ]
[ Ортогональная (прямоугольная) проекция ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC на стороне AB выбраны точки K и L так, что AK = BL, а на стороне BC — точки M и N так, что CN = BM. Докажите, что KN + LMAC.

Прислать комментарий     Решение

Задача 116187  (#4)

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Радикальная ось ]
[ Вспомогательная окружность ]
[ Шестиугольники ]
Сложность: 3+
Классы: 8,9

Дан шестиугольник ABCDEF, в котором AB = BC, CD = DE, EF = FA, а углы A и C — прямые. Докажите, что прямые FD и BE перпендикулярны.

Прислать комментарий     Решение

Задача 116188  (#5)

Темы:   [ ГМТ - окружность или дуга окружности ]
[ Окружность Аполлония ]
[ Подобные треугольники (прочее) ]
[ Замечательные точки и линии в треугольнике (прочее) ]
[ Изогональное сопряжение ]
Сложность: 4
Классы: 8,9

В окружность вписан треугольник ABC. Постройте такую точку P, что точки пересечения прямых AP, BP и CP с данной окружностью являются вершинами равностороннего треугольника.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .