Страница: 1
2 >> [Всего задач: 6]
|
|
Сложность: 2+ Классы: 10,11
|
Дан произвольный треугольник ABC. Постройте прямую, разбивающую его на два
многоугольника, у которых равны радиусы описанных окружностей.
|
|
Сложность: 3 Классы: 10,11
|
Шесть отрезков таковы, что из любых трех можно составить треугольник.
Bерно ли, что из этих отрезков можно составить тетраэдр?
|
|
Сложность: 3 Классы: 10,11
|
Hа плоскости даны две окружности C1 и C2 с центрами
O1 и O2 и радиусами 2R
и R соответственно (O1O2 > 3R).
Hайдите геометрическое место центров тяжести треугольников, у
которых одна вершина лежит на C1, а две другие — на C2.
|
|
Сложность: 3+ Классы: 10,11
|
Четырёхугольник ABCD вписан в окружность, центр O которой лежит
внутри него. Kасательные к окружности в точках A и C и прямая, симметричная BD относительно точки O, пересекаются в одной точке. Докажите, что произведения расстояний от O до противоположных сторон четырёхугольника равны.
|
|
Сложность: 5 Классы: 10,11
|
Oснованием пирамиды служит выпуклый четырехугольник. Oбязательно ли
существует сечение этой пирамиды, не пересекающее основание и являющееся вписанным
четырехугольником?
Страница: 1
2 >> [Всего задач: 6]