ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
классы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На доске написаны три натуральных числа, не превосходящих 40. За один ход можно увеличить любое из написанных чисел на число процентов, равное одному из двух оставшихся чисел, если в результате получится целое число. Существуют ли такие исходные числа, что за несколько ходов одно из чисел на доске можно сделать больше 2011? Решение |
Страница: << 1 2 3 4 5 6 >> [Всего задач: 29]
Каждое звено несамопересекающейся ломаной состоит из нечётного числа сторон клеток квадрата 100×100, соседние звенья перпендикулярны.
На доске написаны три натуральных числа, не превосходящих 40. За один ход можно увеличить любое из написанных чисел на число процентов, равное одному из двух оставшихся чисел, если в результате получится целое число. Существуют ли такие исходные числа, что за несколько ходов одно из чисел на доске можно сделать больше 2011?
У Винтика и у Шпунтика есть по три палочки суммарной длины 1 метр у каждого. И Винтик, и Шпунтик могут сложить из трёх своих палочек треугольник. Ночью в их дом прокрался Незнайка, взял по одной палочке у Винтика и у Шпунтика и поменял их местами. Наутро оказалось, что Винтик не может сложить из своих палочек треугольник. Можно ли гарантировать, что Шпунтик из своих — сможет?
В каждой клетке квадратной таблицы написано по действительному числу. Известно, что в каждой строке таблицы сумма k наибольших чисел равна a, а в каждом столбце таблицы сумма k наибольших чисел равна b.
При какой перестановке a1, a2, ..., a2011 чисел 1, 2, ..., 2011 значение выражения будет наибольшим?
Страница: << 1 2 3 4 5 6 >> [Всего задач: 29] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|