ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На доске написаны три натуральных числа, не превосходящих 40. За один ход можно увеличить любое из написанных чисел на число процентов, равное одному из двух оставшихся чисел, если в результате получится целое число. Существуют ли такие исходные числа, что за несколько ходов одно из чисел на доске можно сделать больше 2011?

   Решение

Задачи

Страница: << 1 2 3 4 5 6 >> [Всего задач: 29]      



Задача 116211  (#4)

Темы:   [ Ломаные ]
[ Четность и нечетность ]
[ Целочисленные решетки (прочее) ]
Сложность: 4-
Классы: 7,8,9

Каждое звено несамопересекающейся ломаной состоит из нечётного числа сторон клеток квадрата 100×100, соседние звенья перпендикулярны.
Может ли ломаная пройти через все вершины клеток?

Прислать комментарий     Решение

Задача 116217  (#4)

Тема:   [ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 8,9,10

На доске написаны три натуральных числа, не превосходящих 40. За один ход можно увеличить любое из написанных чисел на число процентов, равное одному из двух оставшихся чисел, если в результате получится целое число. Существуют ли такие исходные числа, что за несколько ходов одно из чисел на доске можно сделать больше 2011?

Прислать комментарий     Решение

Задача 116223  (#4)

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Неравенство треугольника (прочее) ]
Сложность: 3+
Классы: 10

У Винтика и у Шпунтика есть по три палочки суммарной длины 1 метр у каждого. И Винтик, и Шпунтик могут сложить из трёх своих палочек треугольник. Ночью в их дом прокрался Незнайка, взял по одной палочке у Винтика и у Шпунтика и поменял их местами. Наутро оказалось, что Винтик не может сложить из своих палочек треугольник. Можно ли гарантировать, что Шпунтик из своих — сможет?

Прислать комментарий     Решение

Задача 116229  (#4)

Темы:   [ Числовые таблицы и их свойства ]
[ Принцип Дирихле (прочее) ]
[ Подсчет двумя способами ]
[ Разбиения на пары и группы; биекции ]
[ Доказательство от противного ]
[ Принцип крайнего (прочее) ]
Сложность: 4+
Классы: 9,10,11

Автор: Bapat R.B.

В каждой клетке квадратной таблицы написано по действительному числу. Известно, что в каждой строке таблицы сумма k наибольших чисел равна a, а в каждом столбце таблицы сумма k наибольших чисел равна b.
  а) Докажите, что если  k = 2,  то  a = b.
  б) В случае  k = 3  приведите пример такой таблицы, для которой  a ≠ b.

Прислать комментарий     Решение

Задача 116235  (#4)

Тема:   [ Показательные функции и логарифмы (прочее) ]
Сложность: 5
Классы: 11

При какой перестановке a1, a2, ..., a2011 чисел 1, 2, ..., 2011 значение выражения

будет наибольшим?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 >> [Всего задач: 29]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .