ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Туры:
|
||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Две фирмы по очереди нанимают программистов, среди которых есть 11 гениев. Первого программиста каждая фирма выбирает произвольно, а каждый следующий должен быть знаком с кем-то из ранее нанятых данной фирмой. Если фирма не может нанять программиста по этим правилам, она прекращает приём, а другая может продолжать. Список программистов и их знакомств заранее известен, включая информацию о том, кто гении. Могут ли знакомства быть устроены так, что фирма, вступающая в игру второй, сможет нанять 10 гениев, как бы ни действовала первая фирма? Решение |
Страница: << 3 4 5 6 7 8 9 [Всего задач: 43]
За круглым столом заседают N рыцарей. Каждое утро чародей Мерлин
сажает их в другом порядке. Начиная со второго дня Мерлин разрешил рыцарям делать в течение дня сколько угодно пересадок такого вида: два сидящих рядом рыцаря меняются местами, если только они не были соседями в первый день. Рыцари стараются сесть в том же порядке, что и в какой-нибудь из предыдущих дней:
тогда заседания прекратятся. Какое наибольшее число дней Мерлин гарантированно может проводить заседания?
Квадрат ABCD разрезан на одинаковые прямоугольники с целыми длинами сторон. Фигура F является объединением всех прямоугольников, имеющих общие точки с диагональю AC. Докажите, что AC делит площадь фигуры F пополам.
Две фирмы по очереди нанимают программистов, среди которых есть 11 гениев. Первого программиста каждая фирма выбирает произвольно, а каждый следующий должен быть знаком с кем-то из ранее нанятых данной фирмой. Если фирма не может нанять программиста по этим правилам, она прекращает приём, а другая может продолжать. Список программистов и их знакомств заранее известен, включая информацию о том, кто гении. Могут ли знакомства быть устроены так, что фирма, вступающая в игру второй, сможет нанять 10 гениев, как бы ни действовала первая фирма?
Страница: << 3 4 5 6 7 8 9 [Всего задач: 43] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|