Страница:
<< 3 4 5 6
7 8 9 >> [Всего задач: 43]
|
|
Сложность: 4- Классы: 8,9,10,11
|
Четыре перпендикуляра, опущенные из вершин выпуклого пятиугольника на противоположные стороны, пересекаются в одной точке.
Докажите, что пятый такой перпендикуляр тоже проходит через эту точку.
Дан остроугольный треугольник ABC; AA1, BB1 – его высоты. Из точки A1 опустили перпендикуляры на прямые AC и AB, а из точки B1 опустили перпендикуляры на прямые BC и BA. Докажите, что основания перпендикуляров образуют равнобокую трапецию.
Два муравья проползли каждый по своему замкнутому маршруту на доске 7×7. Каждый полз только по сторонам клеток доски и побывал в каждой из 64 вершин клеток ровно один раз. Каково наименьшее возможное число таких сторон, по которым проползали и первый, и второй муравьи?
|
|
Сложность: 4- Классы: 10,11
|
От балки в форме треугольной призмы с двух сторон отпилили (плоской пилой) по куску. Спилы не задели ни оснований, ни друг друга.
а) Могут ли спилы быть подобными, но не равными треугольниками?
б) Может ли один спил быть равносторонним треугольником со стороной 1, а другой – равносторонним треугольником со стороной 2?
Дракон заточил в темницу рыцаря и выдал ему 100 разных монет, половина из которых волшебные (какие именно – знает только дракон). Каждый день рыцарь раскладывает все монеты на две кучки (не обязательно равные). Если в кучках окажется поровну волшебных монет или поровну обычных, дракон отпустит рыцаря. Сможет ли рыцарь гарантированно освободиться не позже, чем
а) на 50-й день?
б) на 25-й день?
Страница:
<< 3 4 5 6
7 8 9 >> [Всего задач: 43]