ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Точки A1, B1, C1 выбраны на сторонах BC, CA и AB треугольника ABC соответственно. Оказалось, что AB1 – AC1 = CA1 – CB1 = BC1 – BA1. Пусть OA, OB и OC – центры описанных окружностей треугольников AB1C1, A1BC1 и A1B1C. Докажите, что центр вписанной окружности треугольника OAOBOC совпадает с центром вписанной окружности треугольника ABC. Решение |
Страница: << 1 2 [Всего задач: 8]
Точки A1, B1, C1 выбраны на сторонах BC, CA и AB треугольника ABC соответственно. Оказалось, что AB1 – AC1 = CA1 – CB1 = BC1 – BA1. Пусть OA, OB и OC – центры описанных окружностей треугольников AB1C1, A1BC1 и A1B1C. Докажите, что центр вписанной окружности треугольника OAOBOC совпадает с центром вписанной окружности треугольника ABC.
На окружности отмечено 2n + 1 точек, делящих её на равные дуги (n ≥ 2). Двое по очереди стирают по одной точке. Если после хода игрока все треугольники с вершинами в ещё отмеченных точках – тупоугольные, он выигрывает, и игра заканчивается. Кто выиграет при правильной игре: начинающий игру или его противник?
Для натурального n обозначим Sn = 1! + 2! + ... + n!. Докажите, что при некотором n у числа Sn есть простой делитель, больший 102012.
Страница: << 1 2 [Всего задач: 8] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|