ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Петров Ф.

Для натурального n обозначим  Sn = 1! + 2! + ... + n!.  Докажите, что при некотором n у числа Sn есть простой делитель, больший 102012.

   Решение

Задачи

Страница: << 1 2 [Всего задач: 8]      



Задача 116776  (#11.6)

Темы:   [ Вписанные и описанные окружности ]
[ Признаки равенства прямоугольных треугольников ]
[ Пересекающиеся окружности ]
Сложность: 4
Классы: 10,11

Точки A1, B1, C1 выбраны на сторонах BC, CA и AB треугольника ABC соответственно. Оказалось, что  AB1AC1 = CA1CB1 = BC1BA1.  Пусть OA, OB и OC – центры описанных окружностей треугольников AB1C1, A1BC1 и A1B1C. Докажите, что центр вписанной окружности треугольника OAOBOC совпадает с центром вписанной окружности треугольника ABC.

Прислать комментарий     Решение

Задача 116777  (#11.7)

Темы:   [ Теория игр (прочее) ]
[ Правильные многоугольники ]
Сложность: 4+
Классы: 10,11

Автор: Ивлев Ф.

На окружности отмечено 2n + 1  точек, делящих её на равные дуги  (n ≥ 2).  Двое по очереди стирают по одной точке. Если после хода игрока все треугольники с вершинами в ещё отмеченных точках – тупоугольные, он выигрывает, и игра заканчивается. Кто выиграет при правильной игре: начинающий игру или его противник?

Прислать комментарий     Решение

Задача 116778  (#11.8)

Темы:   [ Арифметические функции (прочее) ]
[ Произведения и факториалы ]
[ Делимость чисел. Общие свойства ]
[ Доказательство от противного ]
Сложность: 5-
Классы: 10,11

Автор: Петров Ф.

Для натурального n обозначим  Sn = 1! + 2! + ... + n!.  Докажите, что при некотором n у числа Sn есть простой делитель, больший 102012.

Прислать комментарий     Решение

Страница: << 1 2 [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .