ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В координатном пространстве провели все плоскости с уравнениями x ± y ± z = n (при всех целых n). Они разбили пространство на тетраэдры и октаэдры. Пусть точка (x0, y0, z0) с рациональными координатами не лежит ни в одной проведённой плоскости. Докажите, что найдётся натуральное k, при котором точка (kx0, ky0, kz0) лежит строго внутри некоторого октаэдра разбиения. ![]() ![]() Существует ли такие выпуклый четырёхугольник и точка P внутри него, что сумма расстояний от P до вершин больше периметра четырёхугольника? ![]() ![]() |
Страница: 1 2 >> [Всего задач: 8]
Точка M – середина основания AC остроугольного равнобедренного треугольника ABC. Точка N симметрична M относительно BC. Прямая, параллельная AC и проходящая через точку N, пересекает сторону AB в точке K. Найдите угол AKC.
В треугольнике ABC провели биссектрисы BB' и CC', а затем стёрли весь рисунок, кроме точек A, B' и C'.
Квадратный лист бумаги согнули по прямой так, что одна из вершин квадрата оказалась на несмежной стороне. При этом образовалось три треугольника. В эти треугольники вписали окружности (см. рис.). Докажите, что радиус одной из этих окружностей равен сумме радиусов двух других.
Дан равнобедренный треугольник ABC, в котором ∠B = 120°. На продолжениях сторон AB и CB за точку B взяли точки P и Q соответственно так, что лучи AQ и CP пересекаются под прямым углом. Докажите, что ∠PQB = 2∠PCQ.
Существует ли такие выпуклый четырёхугольник и точка P внутри него, что сумма расстояний от P до вершин больше периметра четырёхугольника?
Страница: 1 2 >> [Всего задач: 8] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |