ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Можно ли расположить на плоскости три вектора так, чтобы модуль суммы каждых двух из них был равен 1, а сумма всех трёх была равна нулевому вектору? ![]() ![]() Куб с ребром n составлен из белых и чёрных кубиков с ребром 1 таким образом, что каждый белый кубик имеет общую грань ровно с тремя чёрными, а каждый чёрный – ровно с тремя белыми. При каких n это возможно? ![]() ![]() ![]() Выдающемуся бразильскому футболисту Роналдиньо Гаушо исполнится X лет в X² году. ![]() ![]() |
Страница: 1 2 3 >> [Всего задач: 15]
Известно, что tg α + tg β = p, ctg α + ctg β = q. Найдите tg(α + β).
Можно ли расположить на плоскости три вектора так, чтобы модуль суммы каждых двух из них был равен 1, а сумма всех трёх была равна нулевому вектору?
Выдающемуся бразильскому футболисту Роналдиньо Гаушо исполнится X лет в X² году.
Куб с ребром n составлен из белых и чёрных кубиков с ребром 1 таким образом, что каждый белый кубик имеет общую грань ровно с тремя чёрными, а каждый чёрный – ровно с тремя белыми. При каких n это возможно?
Дан многочлен P(x) с целыми коэффициентами. Известно, что Р(1) = 2013, Р(2013) = 1, P(k) = k, где k – некоторое целое число. Найдите k.
Страница: 1 2 3 >> [Всего задач: 15] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |