ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Может ли число, записываемое при помощи 100 нулей, 100 единиц и 100 двоек, быть точным квадратом?

   Решение

Задачи

Страница: << 1 2 3 >> [Всего задач: 15]      



Задача 103963

 [Делимость на 10]
Тема:   [ Принцип Дирихле (прочее) ]
Сложность: 2+
Классы: 6,7,8

Доказать, что среди любых одиннадцати целых чисел найдутся два, разность между которыми делится на 10.
Прислать комментарий     Решение


Задача 30368

Темы:   [ Делимость чисел. Общие свойства ]
[ НОД и НОК. Взаимная простота ]
Сложность: 3-
Классы: 6,7,8

Целые числа a и b таковы, что  56a = 65b.  Докажите, что   a + b  – составное число.

Прислать комментарий     Решение

Задача 53484

Темы:   [ Признаки и свойства параллелограмма ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Биссектриса угла ]
Сложность: 3-
Классы: 8,9

Найдите периметр параллелограмма, если биссектриса одного из его углов делит сторону параллелограмма на отрезки 7 и 14.

Прислать комментарий     Решение

Задача 30367

Темы:   [ Признаки делимости на 3 и 9 ]
[ Десятичная система счисления ]
Сложность: 3
Классы: 6,7,8

Может ли число, записываемое при помощи 100 нулей, 100 единиц и 100 двоек, быть точным квадратом?

Прислать комментарий     Решение

Задача 103964

 [Делимость на n]
Темы:   [ Принцип Дирихле (прочее) ]
[ Арифметика остатков (прочее) ]
Сложность: 3
Классы: 7,8,9

Имеется n целых чисел. Доказать, что среди них найдется несколько, или быть может одно, сумма которых делится на n.
Прислать комментарий     Решение


Страница: << 1 2 3 >> [Всего задач: 15]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .