ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

При организации экспедиции на Эверест участниками было установлено четыре высотных лагеря (не считая базового), на растоянии дня пути друг от друга, после чего все спустились вниз. Пересчитав запасы, руководитель решил, что надо занести еще один баллон кислорода в четвертый лагерь, а потом всем опять вернуться вниз на отдых. При этом каждый участник
1) может нести вверх не больше трех баллонов,
2) сам тратит в день ровно один баллон кислорода.
Какое наименьшее количество баллонов придется взять из лагеря для достижения поставленной цели? (Оставлять баллоны можно только в лагерях.)

   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 58]      



Задача 98188

Темы:   [ Турниры и турнирные таблицы ]
[ Примеры и контрпримеры. Конструкции ]
[ Отношение порядка ]
Сложность: 3+
Классы: 6,7,8

Автор: Рубин А.

Три шахматиста A, B и C сыграли матч-турнир (каждый с каждым сыграл одинаковое число партий). Может ли случиться, что по числу очков A занял первое место, C – последнее, а по числу побед, наоборот, A занял последнее место, C – первое (за победу присуждается одно очко, за ничью – пол-очка)?

Прислать комментарий     Решение

Задача 32783

Тема:   [ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 7,8,9

За круглым столом сидят 33 представителя четырех племен: люди, гномы, эльфы и гоблины. Известно, что люди не сидят рядом с гоблинами, а эльфы не сидят рядом с гномами. Докажите, что какие-то два представителя одного и того же племени сидят рядом.

Прислать комментарий     Решение


Задача 32795

Тема:   [ Теория алгоритмов (прочее) ]
Сложность: 3+
Классы: 7,8,9

На международный конгресс приехало 578 делегатов из разных стран. Любые три делегата могут поговорить между собой без помощи остальных (при этом, возможно, одному из них придется переводить разговор двух других). Докажите, что всех делегатов можно поселить в двухместных номерах гостиницы таким образом, чтобы любые двое, живущие в одном номере, могли поговорить без посторонней помощи.
Прислать комментарий     Решение


Задача 32840

Тема:   [ Соображения непрерывности ]
Сложность: 3+
Классы: 7,8,9

Выйдя на маршрут в 4 часа утра, альпинист Джеф Лоу к вечеру достиг пика "Свободная Корея". Переночевав на вершине, на следующий день он вышел в то же время и быстро спустился обратно по пути подъема. Докажите, что на маршруте есть такая точка, которую Лоу во время спуска и во время подъема проходил в одно и то же время суток.
Прислать комментарий     Решение


Задача 32841

Тема:   [ Процессы и операции ]
Сложность: 4-
Классы: 7,8,9,10

При организации экспедиции на Эверест участниками было установлено четыре высотных лагеря (не считая базового), на растоянии дня пути друг от друга, после чего все спустились вниз. Пересчитав запасы, руководитель решил, что надо занести еще один баллон кислорода в четвертый лагерь, а потом всем опять вернуться вниз на отдых. При этом каждый участник
1) может нести вверх не больше трех баллонов,
2) сам тратит в день ровно один баллон кислорода.
Какое наименьшее количество баллонов придется взять из лагеря для достижения поставленной цели? (Оставлять баллоны можно только в лагерях.)
Прислать комментарий     Решение


Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 58]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .