ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Расположите 10 треугольников на плоскости так, чтобы любые два из них имели общую точку, а любые три - нет.

   Решение

Задачи

Страница: << 35 36 37 38 39 40 41 >> [Всего задач: 810]      



Задача 34901

Тема:   [ Подсчет двумя способами ]
Сложность: 2+

В таблицу n*n записаны n2 чисел, сумма которых неотрицательна. Докажите, что можно переставить столбцы таблицы так, что сумма n чисел, расположенных по диагонали, идущей из левого нижнего угла в правый верхний, будет неотрицательна.
Прислать комментарий     Решение


Задача 34962

Темы:   [ Принцип Дирихле (прочее) ]
[ Системы отрезков, прямых и окружностей ]
Сложность: 2+
Классы: 7,8,9

Можно ли расположить на плоскости 1000 отрезков так, чтобы каждый отрезок своими концами упирался строго внутрь других отрезков.
Прислать комментарий     Решение


Задача 34963

Тема:   [ Принцип крайнего ]
Сложность: 2+

8 теннисистов провели круговой турнир. Докажите, что найдутся 4 теннисиста A,B,C,D, такие что A выиграл у B,C,D, B выиграл у C и D, C выиграл у D.
Прислать комментарий     Решение


Задача 34966

Темы:   [ Формулы сокращенного умножения ]
[ Десятичная система счисления ]
Сложность: 2+
Классы: 8,9

Дано число 100...01, число нулей в нем равно 299. Докажите, что это число составное.
Прислать комментарий     Решение


Задача 34967

Темы:   [ Комбинаторная геометрия (прочее) ]
[ Системы точек и отрезков. Примеры и контрпримеры ]
Сложность: 2+
Классы: 7,8,9

Расположите 10 треугольников на плоскости так, чтобы любые два из них имели общую точку, а любые три - нет.
Прислать комментарий     Решение


Страница: << 35 36 37 38 39 40 41 >> [Всего задач: 810]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .