ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Дана последовательность чисел x1, x2, ... . Известно, что 0<x1<1 и xk+1=xk-xk2 для всех k>1. Докажите, что x12+x22+...+xn2<1 для любого n>1. ![]() ![]() Жук ползёт по рёбрам куба. Сможет ли он последовательно обойти все рёбра, проходя по каждому ребру ровно один раз? ![]() ![]() ![]() Можно ли выписать в ряд десять чисел так, чтобы сумма любых пяти чисел подряд была бы положительна, а сумма любых семи подряд отрицательна? ![]() ![]() |
Страница: << 68 69 70 71 72 73 74 >> [Всего задач: 810]
Каково минимальное целое число вида 111...11, делящееся на 333...33 (100 троек)?
Может ли сумма 1 + 2 + 3 + ... + (n – 1) + n при каком-нибудь натуральном n оканчиваться цифрой 7?
Решить в целых числах уравнения a) 1/a + 1/b = 1/7; б) 1/a + 1/b = 1/25.
Жук ползёт по рёбрам куба. Сможет ли он последовательно обойти все рёбра, проходя по каждому ребру ровно один раз?
Страница: << 68 69 70 71 72 73 74 >> [Всего задач: 810] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |