ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Меньшая сторона прямоугольника равна 1, острый угол между диагоналями равен 60o. Найдите радиус окружности, описанной около прямоугольника.

   Решение

Задачи

Страница: << 43 44 45 46 47 48 49 >> [Всего задач: 6702]      



Задача 52629

Темы:   [ Вписанная, описанная и вневписанная окружности; их радиусы ]
[ Диаметр, основные свойства ]
Сложность: 2+
Классы: 8,9

Меньшая сторона прямоугольника равна 1, острый угол между диагоналями равен 60o. Найдите радиус окружности, описанной около прямоугольника.

Прислать комментарий     Решение


Задача 52817

Тема:   [ Концентрические окружности ]
Сложность: 2+
Классы: 8,9

Радиусы двух концентрических окружностей относятся как 7:4, а ширина кольца равна 12. Найдите радиус меньшей окружности.

Прислать комментарий     Решение


Задача 54079

Темы:   [ Удвоение медианы ]
[ Признаки и свойства параллелограмма ]
Сложность: 2+
Классы: 8,9

На продолжении медианы AM треугольника ABC за точку M отложен отрезок MD, равный AM. Докажите, что четырёхугольник ABDC — параллелограмм.

Прислать комментарий     Решение


Задача 54133

Тема:   [ Средняя линия треугольника ]
Сложность: 2+
Классы: 8,9

Точки M и N расположены соответственно на сторонах AB и AC треугольника ABC, причем BM = 3AM и CN = 3AN. Докажите, что MN || BC и найдите MN, если BC = 12.

Прислать комментарий     Решение


Задача 54168

Темы:   [ Перенос стороны, диагонали и т.п. ]
[ Признаки и свойства параллелограмма ]
Сложность: 2+
Классы: 8,9

Боковые стороны трапеции равны 7 и 11, а основания — 5 и 15. Прямая, проведённая через вершину меньшего основания параллельно большей боковой стороне, отсекает от трапеции треугольник. Найдите его стороны.

Прислать комментарий     Решение


Страница: << 43 44 45 46 47 48 49 >> [Всего задач: 6702]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .