ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Из общей точки проведены к окружности две касательные. Радиус окружности равен 11, а сумма касательных равна 120.
Найдите расстояние от центра до общей точки касательных.

   Решение

Задачи

Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 6702]      



Задача 52884

Темы:   [ Признаки и свойства касательной ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 2+
Классы: 8,9

К окружности радиуса 36 проведена касательная из точки, удаленной от центра на расстояние, равное 85. Найдите длину касательной.

Прислать комментарий     Решение

Задача 52885

Темы:   [ Две касательные, проведенные из одной точки ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 2+
Классы: 8,9

Из общей точки проведены к окружности две касательные. Радиус окружности равен 11, а сумма касательных равна 120.
Найдите расстояние от центра до общей точки касательных.

Прислать комментарий     Решение

Задача 53287

Темы:   [ Площадь круга, сектора и сегмента ]
[ Теорема Пифагора (прямая и обратная) ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 2+
Классы: 8,9

В круге радиуса r проведена хорда, равная a. Найдите площадь получившегося сегмента.

Прислать комментарий     Решение

Задача 53288

Темы:   [ Площадь круга, сектора и сегмента ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 2+
Классы: 8,9

В круге с центром O проведена хорда AB. Вычислите площадь получившегося сегмента, если  ∠AOB = α,  а радиус круга равен r.

Прислать комментарий     Решение

Задача 53305

Темы:   [ Равные треугольники. Признаки равенства ]
[ Центральная симметрия помогает решить задачу ]
Сложность: 2+
Классы: 8,9

Отрезки AB и CD пересекаются в точке O, которая является серединой каждого из них. Чему равен отрезок BD, если отрезок  AC = 10?

Прислать комментарий     Решение

Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 6702]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .