ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Главы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На отрезке AC взята точка B и на отрезках AB, BC, CA построены полуокружности S1, S2, S3 по одну сторону от AC. D — такая точка на S3, что BD AC. Общая касательная к S1 и S2, касается этих полуокружностей в точках F и E соответственно. а) Докажите, что прямая EF параллельна касательной к S3, проведенной через точку D. б) Докажите, что BFDE — прямоугольник. Решение |
Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 1956]
В треугольник вписана окружность радиуса r. Касательные к этой окружности, параллельные сторонам треугольника, отсекают от него три маленьких треугольника. Пусть r1, r2, r3 – радиусы вписанных в эти треугольники окружностей. Докажите, что r1 + r2 + r3 = r.
а) Докажите, что прямая EF параллельна касательной к S3, проведенной через точку D. б) Докажите, что BFDE — прямоугольник.
Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 1956] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|