ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Главы:
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 1956]      



Задача 56526  (#01.070)

Темы:   [ Свойства симметрий и осей симметрии ]
[ Вписанные и описанные окружности ]
[ Вспомогательные равные треугольники ]
[ Вписанный угол равен половине центрального ]
[ Равные треугольники. Признаки равенства (прочее) ]
Сложность: 3
Классы: 8,9

Точки A1, B1 и C1 симметричны центру описанной окружности треугольника ABC относительно его сторон.
Докажите, что треугольники ABC и A1B1C1 равны.

Прислать комментарий     Решение

Задача 56527  (#01.071)

Темы:   [ Отношение, в котором биссектриса делит сторону ]
[ Вспомогательные подобные треугольники ]
Сложность: 3+
Классы: 8,9

Докажите, что если  ∠BAC = 2∠ABC,  то   BC² = (AC + ABAC.

Прислать комментарий     Решение

Задача 56528  (#01.072)

Темы:   [ Подобные треугольники (прочее) ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Признаки и свойства параллелограмма ]
Сложность: 3
Классы: 8,9

На прямой l даны точки A, B, C и D. Через точки A и B, а также через точки C и D проводятся параллельные прямые.
Докажите, что диагонали полученных таким образом параллелограммов (или их продолжения) пересекают прямую l в двух фиксированных точках.

Прислать комментарий     Решение

Задача 56529  (#01.073)

Темы:   [ Биссектриса угла (ГМТ) ]
[ Средняя линия треугольника ]
Сложность: 3
Классы: 8,9

В треугольнике ABC проведены биссектриса AD и средняя линия A1C1. Прямые AD и A1C1 пересекаются в точке K. Докажите, что  2A1K = |b – c|.

Прислать комментарий     Решение

Задача 56530  (#01.074)

Темы:   [ Признаки и свойства параллелограмма ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 3
Классы: 8,9

На сторонах AD и CD параллелограмма ABCD взяты точки M и N так, что  MN || AC.  Докажите, что  SABM = SCBN.

Прислать комментарий     Решение

Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 1956]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .