ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Три прямые, параллельные сторонам данного треугольника, отсекают от него три треугольника, причём остается равносторонний шестиугольник.
Найдите длину стороны шестиугольника, если длины сторон треугольника равны a, b и c.

   Решение

Задачи

Страница: << 1 2 3 >> [Всего задач: 13]      



Задача 56529

Темы:   [ Биссектриса угла (ГМТ) ]
[ Средняя линия треугольника ]
Сложность: 3
Классы: 8,9

В треугольнике ABC проведены биссектриса AD и средняя линия A1C1. Прямые AD и A1C1 пересекаются в точке K. Докажите, что  2A1K = |b – c|.

Прислать комментарий     Решение

Задача 56530

Темы:   [ Признаки и свойства параллелограмма ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 3
Классы: 8,9

На сторонах AD и CD параллелограмма ABCD взяты точки M и N так, что  MN || AC.  Докажите, что  SABM = SCBN.

Прислать комментарий     Решение

Задача 56531

Темы:   [ Признаки и свойства параллелограмма ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 3
Классы: 8,9

На диагонали AC параллелограмма ABCD взяты точки P и Q так, что  AP = CQ.  Точка M такова, что  PM || AD  и  QM || AB.
Докажите, что точка M лежит на диагонали BD.

Прислать комментарий     Решение

Задача 56533

Тема:   [ Подобные треугольники (прочее) ]
Сложность: 3
Классы: 8,9

Три прямые, параллельные сторонам данного треугольника, отсекают от него три треугольника, причём остается равносторонний шестиугольник.
Найдите длину стороны шестиугольника, если длины сторон треугольника равны a, b и c.

Прислать комментарий     Решение

Задача 56534

Тема:   [ Подобные треугольники (прочее) ]
Сложность: 3
Классы: 8,9

Три прямые, параллельные сторонам треугольника, пересекаются в одной точке, причем стороны треугольника высекают на этих прямых отрезки длиной x. Найдите x, если длины сторон треугольника равны a, b и c.

Прислать комментарий     Решение

Страница: << 1 2 3 >> [Всего задач: 13]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .