ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Точка P лежит внутри треугольника ABC, причём ∠ABP = ∠ACP. На прямых AB и AC взяты такие точки C1 и B1, что BC1 : CB1 = CP : BP. Докажите, что одна из диагоналей параллелограмма, две стороны которого лежат на прямых BP и CP, а две другие стороны (или их продолжения) проходят через B1 и C1, параллельна BC. Решение |
Страница: << 1 2 3 [Всего задач: 13]
Докажите, что если ∠BAC = 2∠ABC, то BC² = (AC + AB)·AC.
Точка P лежит внутри треугольника ABC, причём ∠ABP = ∠ACP. На прямых AB и AC взяты такие точки C1 и B1, что BC1 : CB1 = CP : BP. Докажите, что одна из диагоналей параллелограмма, две стороны которого лежат на прямых BP и CP, а две другие стороны (или их продолжения) проходят через B1 и C1, параллельна BC.
Продолжения боковых сторон трапеции с основаниями AD и BC пересекаются в точке O. Концы отрезка EF, параллельного основаниям и проходящего через точку пересечения диагоналей, лежат соответственно на сторонах AB и CD. Докажите, что AE : CF = AO : CO.
Страница: << 1 2 3 [Всего задач: 13] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|