Страница: 1
2 3 >> [Всего задач: 15]
На окружности взяты точки
A,
B,
C и
D. Прямые
AB
и
CD пересекаются в точке
M. Докажите, что
AC . AD/
AM =
BC . BD/
BM.
На окружности даны точки
A,
B и
C, причем точка
B
более удалена от прямой
l, касающейся окружности в точке
A,
чем
C. Прямая
AC пересекает прямую, проведенную через точку
B
параллельно
l, в точке
D. Докажите, что
AB2 =
AC . AD.
Прямая
l касается окружности с диаметром
AB
в точке
C;
M и
N — проекции точек
A и
B на прямую
l,
D — проекция точки
C на
AB. Докажите, что
CD2 =
AM . BN.
В треугольнике
ABC проведена высота
AH, а из
вершин
B и
C опущены перпендикуляры
BB1 и
CC1 на
прямую, проходящую через точку
A. Докажите,
что
ABC HB1C1.
На дуге
BC окружности, описанной около равностороннего
треугольника
ABC, взята произвольная точка
P.
Отрезки
AP и
BC пересекаются в точке
Q. Докажите,
что
1/
PQ = 1/
PB + 1/
PC.
Страница: 1
2 3 >> [Всего задач: 15]