ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Главы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи ABCD - вписанный четырехугольник, диагонали которого перпендикулярны. P - точка пересечения диагоналей. Докажите, что середины сторон четырехугольника ABCD и проекции точки P на стороны лежат на одной окружности. ![]() ![]() ABCD - вписанный четырехугольник, диагонали которого перпендикулярны. Докажите, что площадь четырехугольника ABCD равна (AB . CD + BC . AD)/2. ![]() ![]() ![]() а) ABCD - вписанный четырехугольник, диагонали которого перпендикулярны. Через вершины A, B, C и D проведены касательные к описанной окружности. Докажите, что образованный ими четырехугольник вписанный. б) Четырехугольник KLMN вписанный и описанный одновременно; A и B — точки касания вписанной окружности со сторонами KL и LM. Докажите, что AK . BM = r2, где r — радиус вписанной окружности. ![]() ![]() ![]() ABCD - вписанный четырехугольник, диагонали которого перпендикулярны. Из вершин A и B опущены перпендикуляры на CD, пересекающие прямые BD и AC в точках K и L соответственно. Докажите, что AKLB — ромб. ![]() ![]() |
Страница: << 31 32 33 34 35 36 37 >> [Всего задач: 1956]
Докажите, что расстояние от точки O до стороны AB равно половине длины стороны CD.
Докажите, что прямая, проведенная из точки P перпендикулярно BC, делит сторону AD пополам.
Страница: << 31 32 33 34 35 36 37 >> [Всего задач: 1956] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |