ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Пусть H — точка пересечения высот треугольника ABC, а AA' — диаметр его описанной окружности. Докажите, что отрезок A'H делит сторону BC пополам.

   Решение

Задачи

Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 104]      



Задача 56631  (#02.086)

Тема:   [ Точка Микеля ]
Сложность: 5
Классы: 8,9

Точки A, B, C и D лежат на окружности с центром O. Прямые AB и CD пересекаются в точке E, а описанные окружности треугольников AEC и BED пересекаются в точках E и P. Докажите, что:
а) точки A, D, P и O лежат на одной окружности;
б)  $ \angle$EPO = 90o.
Прислать комментарий     Решение


Задача 56632  (#02.087)

Тема:   [ Точка Микеля ]
Сложность: 6
Классы: 8,9

Даны четыре прямые. Докажите, что проекции точки Микеля на эти прямые лежат на одной прямой.
Прислать комментарий     Решение


Задача 56633  (#02.088)

Тема:   [ Вписанный угол (прочее) ]
Сложность: 2
Классы: 8,9

В треугольнике ABC проведена высота AHO — центр описанной окружности. Докажите, что  $ \angle$OAH = |$ \angle$B - $ \angle$C|.
Прислать комментарий     Решение


Задача 56634  (#02.089)

Тема:   [ Вписанный угол (прочее) ]
Сложность: 3
Классы: 8,9

Пусть H — точка пересечения высот треугольника ABC, а AA' — диаметр его описанной окружности. Докажите, что отрезок A'H делит сторону BC пополам.
Прислать комментарий     Решение


Задача 56635  (#02.090)

Тема:   [ Вписанный угол (прочее) ]
Сложность: 3
Классы: 8,9

Через вершины A и B треугольника ABC проведены две параллельные прямые, а прямые m и n симметричны им относительно биссектрис соответствующих углов. Докажите, что точка пересечения прямых m и n лежит на описанной окружности треугольника ABC.
Прислать комментарий     Решение


Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 104]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .