ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Из центра O окружности опущен перпендикуляр OA на прямую l. На прямой l взяты точки B и C так, что AB = AC. Через точки B и C проведены две секущие, первая из которых пересекает окружность в точках P и Q, а вторая — в точках M и N. Прямые PM и QN пересекают прямую l в точках R и S. Докажите, что AR = AS. Решение |
Страница: << 1 2 [Всего задач: 7]
Страница: << 1 2 [Всего задач: 7] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|