ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На плоскости даны две неконцентрические окружности S1 и S2. Докажите, что геометрическим местом точек, для которых степень относительно S1 равна степени относительно S2, является прямая.



   Решение

Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 22]      



Задача 56714

Темы:   [ Радикальная ось ]
[ Метод координат на плоскости ]
Сложность: 5
Классы: 8,9,10

На плоскости даны две неконцентрические окружности S1 и S2. Докажите, что геометрическим местом точек, для которых степень относительно S1 равна степени относительно S2, является прямая.



Прислать комментарий     Решение

Задача 56715

Тема:   [ Радикальная ось ]
Сложность: 5
Классы: 9

Докажите, что радикальная ось двух пересекающихся окружностей проходит через точки их пересечения.
Прислать комментарий     Решение


Задача 56716

Тема:   [ Радикальная ось ]
Сложность: 5
Классы: 9

На плоскости даны три окружности, центры которых не лежат на одной прямой. Проведем радикальные оси для каждой пары этих окружностей. Докажите, что все три радикальные оси пересекаются в одной точке.

Прислать комментарий     Решение


Задача 56718

Тема:   [ Радикальная ось ]
Сложность: 5
Классы: 9

Постройте радикальную ось двух непересекающихся окружностей S1 и S2.
Прислать комментарий     Решение


Задача 56719

Тема:   [ Радикальная ось ]
Сложность: 5
Классы: 9

Даны две неконцентрические окружности S1 и S2. Докажите, что множеством центров окружностей, пересекающих обе эти окружности под прямым углом, является их радикальная ось, из которой (если данные окружности пересекаются) выброшена их общая хорда.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 >> [Всего задач: 22]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .