ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Из середины каждой стороны остроугольного треугольника опущены перпендикуляры на две другие стороны. Докажите, что площадь ограниченного ими шестиугольника равна половине площади исходного треугольника. Решение |
Страница: 1 [Всего задач: 4]
а) Точки деления соединены так, как показано на рис., а. б) Точки деления соединены так, как показано на рис., б. Чему равны площади образовавшихся при этом маленьких параллелограммов?
б) Докажите, что площадь двенадцатиугольника, вписанного в окружность радиуса 1, равна 3.
Страница: 1 [Всего задач: 4] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|