ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
параграфы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Внутри треугольника ABC взята точка X. Прямая AX пересекает описанную окружность в точке A1. В сегмент, отсекаемый стороной BC, вписана окружность, касающаяся дуги BC в точке A1, а стороны BC — в точке A2. Точки B2 и C2 определяются аналогично. Докажите, что прямые AA2, BB2 и CC2 пересекаются в одной точке. Решение |
Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 176]
= .
б) Внутри равнобедренного треугольника ABC с основанием AB взяты точки M и N так, что CAM = ABN и CBM = BAN. Докажите, что точки C, M и N лежат на одной прямой.
а) Докажите, что основания перпендикуляров, опущенных из точки P описанной окружности треугольника на его стороны или их продолжения, лежат на одной прямой (прямая Симсона). б) Основания перпендикуляров, опущенных из некоторой точки P на стороны треугольника или их продолжения, лежат на одной прямой. Докажите, что точка P лежит на описанной окружности треугольника.
Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 176] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|