ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

На шахматной доске 8×8 отмечены центры всех полей. Можно ли тринадцатью прямыми, не проходящими через эти центры, разбить доску на части так, чтобы внутри каждой из них лежало не более одной отмеченной точки?

Вниз   Решение


Докажите, что любой остроугольный треугольник площади 1 можно поместить в прямоугольный треугольник площади $ \sqrt{3}$.

Вверх   Решение

Задачи

Страница: << 1 2 3 >> [Всего задач: 12]      



Задача 57357

Тема:   [ Площадь. Одна фигура лежит внутри другой ]
Сложность: 5
Классы: 9

а) Докажите, что в выпуклый многоугольник площади S и периметра P можно поместить круг радиуса S/P.
б) Внутри выпуклого многоугольника площади S1 и периметра P1 расположен выпуклый многоугольник площади S2 и периметра P2. Докажите, что  2S1/P1 > S2/P2.
Прислать комментарий     Решение


Задача 57358

Тема:   [ Площадь. Одна фигура лежит внутри другой ]
Сложность: 5
Классы: 9

Докажите, что площадь параллелограмма, лежащего внутри треугольника, не превосходит половины площади треугольника.
Прислать комментарий     Решение


Задача 57359

Тема:   [ Площадь. Одна фигура лежит внутри другой ]
Сложность: 5
Классы: 9

Докажите, что площадь треугольника, вершины которого лежат на сторонах параллелограмма, не превосходит половины площади параллелограмма.
Прислать комментарий     Решение


Задача 57360

Тема:   [ Площадь. Одна фигура лежит внутри другой ]
Сложность: 5
Классы: 9

Докажите, что любой остроугольный треугольник площади 1 можно поместить в прямоугольный треугольник площади $ \sqrt{3}$.
Прислать комментарий     Решение


Задача 57361

Тема:   [ Площадь. Одна фигура лежит внутри другой ]
Сложность: 5+
Классы: 9

а) Докажите, что выпуклый многоугольник площади S можно поместить в некоторый прямоугольник площади не более 2S.
б) Докажите, что в выпуклый многоугольник площади S можно вписать параллелограмм площади не менее S/2.
Прислать комментарий     Решение


Страница: << 1 2 3 >> [Всего задач: 12]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .