ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что  20Rr - 4r2 $ \leq$ ab + bc + ca $ \leq$ 4(R + r)2.

   Решение

Задачи

Страница: 1 [Всего задач: 4]      



Задача 57431

Тема:   [ Длины сторон (неравенства) ]
Сложность: 3
Классы: 8,9

Докажите, что  $ {\frac{9r}{2S}}$ $ \leq$ $ {\frac{1}{a}}$ + $ {\frac{1}{b}}$ + $ {\frac{1}{c}}$ $ \leq$ $ {\frac{9R}{4S}}$.
Прислать комментарий     Решение


Задача 57432

Тема:   [ Длины сторон (неравенства) ]
Сложность: 5
Классы: 8,9

Докажите, что  2bc cos$ \alpha$/(b + c) < b + c - a < 2bc/a.
Прислать комментарий     Решение


Задача 57433

Тема:   [ Длины сторон (неравенства) ]
Сложность: 5
Классы: 8,9

Докажите, что если a, b, c — длины сторон треугольника периметра 2, то  a2 + b2 + c2 < 2(1 - abc).
Прислать комментарий     Решение


Задача 57434

Тема:   [ Длины сторон (неравенства) ]
Сложность: 6
Классы: 8,9

Докажите, что  20Rr - 4r2 $ \leq$ ab + bc + ca $ \leq$ 4(R + r)2.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 4]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .