ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

В городе 57 автобусных маршрутов. Известно, что:
  1) с каждой остановки на любую другую остановку можно попасть без пересадки;
  2) для каждой пары маршрутов найдётся, и притом только одна, остановка, на которой можно пересесть с одного из этих маршрутов на другой;
  3) на каждом маршруте не менее трёх остановок.
Сколько остановок имеет каждый из 57 маршрутов?

Вниз   Решение


Если все 6 граней параллелепипеда — равные между собой параллелограммы, то они суть ромбы. Докажите.

ВверхВниз   Решение


Решить систему
   x1 + 2x2 + 2x3 + 2x4 + 2x5 = 1,
   x1 + 3x2 + 4x3 + 4x4 + 4x5 = 2,
   x1 + 3x2 + 5x3 + 6x4 + 6x5 = 3,
   x1 + 3x2 + 5x3 + 7x4 + 8x5 = 4,
   x1 + 3x2 + 5x3 + 7x4 + 9x5 = 5.

ВверхВниз   Решение


Докажите, что если треугольник ABC лежит внутри треугольника A'B'C', то  rABC < rA'B'C'.

ВверхВниз   Решение


Через вершину A равнобедренного треугольника ABC с основанием AC проведена окружность, касающаяся стороны BC в точке M и пересекающая сторону AB в точке N. Докажите, что AN > CM.

Вверх   Решение

Задачи

Страница: 1 2 3 >> [Всего задач: 12]      



Задача 57497

Тема:   [ Неравенства для элементов треугольника (прочее) ]
Сложность: 2+
Классы: 9

Через точку O пересечения медиан треугольника ABC проведена прямая, пересекающая его стороны в точках M и N. Докажите, что  NO $ \leq$ 2MO.
Прислать комментарий     Решение


Задача 57498

Тема:   [ Неравенства для элементов треугольника (прочее) ]
Сложность: 2+
Классы: 9

Докажите, что если треугольник ABC лежит внутри треугольника A'B'C', то  rABC < rA'B'C'.
Прислать комментарий     Решение


Задача 57499

Тема:   [ Неравенства для элементов треугольника (прочее) ]
Сложность: 3
Классы: 9

В треугольнике ABC сторона c наибольшая, а a наименьшая. Докажите, что  lc $ \leq$ ha.
Прислать комментарий     Решение


Задача 57500

Тема:   [ Неравенства для элементов треугольника (прочее) ]
Сложность: 3
Классы: 9

Медианы AA1 и BB1 треугольника ABC перпендикулярны. Докажите, что  ctgA + ctgB $ \geq$ 2/3.
Прислать комментарий     Решение


Задача 57501

Тема:   [ Неравенства для элементов треугольника (прочее) ]
Сложность: 3
Классы: 9

Через вершину A равнобедренного треугольника ABC с основанием AC проведена окружность, касающаяся стороны BC в точке M и пересекающая сторону AB в точке N. Докажите, что AN > CM.
Прислать комментарий     Решение


Страница: 1 2 3 >> [Всего задач: 12]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .