ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Сторона основания правильной четырёхугольной пирамиды равна a . Боковая грань образует с плоскостью основания угол равный 45o . Найдите объём пирамиды.

Вниз   Решение


Через точку A , лежащую на окружности с центром O, проведены диаметр AB и хорда AC. Докажите, что угол BAC вдвое меньше угла BOC.

ВверхВниз   Решение


На плоскости даны 2n + 3 точки, никакие три из которых не лежат на одной прямой, а никакие четыре не лежат на одной окружности. Докажите, что из этих точек можно выбрать три точки так, что n из оставшихся точек лежат внутри окружности, проведенной через выбранные точки, а n — вне ее.

ВверхВниз   Решение



Даны три некомпланарных вектора. Существует ли четвертый вектор, перпендикулярный трем данным?

ВверхВниз   Решение


Через данную точку A проведите прямую так, чтобы отрезок, заключенный между точками пересечения ее с данной прямой и данной окружностью, делился точкой A пополам.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 >> [Всего задач: 26]      



Задача 57848  (#16.011)

Темы:   [ Свойства симметрии и центра симметрии ]
[ Композиция центральных симметрий ]
[ Метод координат на плоскости ]
Сложность: 5-
Классы: 8,9

а) Докажите, что ограниченная фигура не может иметь более одного центра симметрии.
б) Докажите, что никакая фигура не может иметь ровно двух центров симметрии.
в) Пусть M — конечное множество точек на плоскости. Точку O назовем к почти центром симметриик множества M, если из M можно выбросить одну точку так, что O будет центром симметрии оставшегося множества. Сколько к почти центров симметриик может иметь M?
Прислать комментарий     Решение


Задача 57849  (#16.012)

Тема:   [ Свойства симметрии и центра симметрии ]
Сложность: 4
Классы: 9

На отрезке AB дано n пар точек, симметричных относительно его середины; n точек окрашено в синий цвет, остальные — в красный. Докажите, что сумма расстояний от A до синих точек равна сумме расстояний от B до красных точек.
Прислать комментарий     Решение


Задача 55712  (#16.013)

Тема:   [ Центральная симметрия помогает решить задачу ]
Сложность: 3+
Классы: 8,9

С помощью циркуля и линейки проведите через общую точку A окружностей S1 и S2 прямую так, чтобы эти окружности высекали на ней равные хорды.

Прислать комментарий     Решение


Задача 57851  (#16.014)

Тема:   [ Центральная симметрия помогает решить задачу ]
Сложность: 3
Классы: 9

Через данную точку A проведите прямую так, чтобы отрезок, заключенный между точками пересечения ее с данной прямой и данной окружностью, делился точкой A пополам.
Прислать комментарий     Решение


Задача 57852  (#16.015)

Тема:   [ Центральная симметрия помогает решить задачу ]
Сложность: 3
Классы: 9

Даны угол ABC и точка D внутри его. Постройте отрезок с концами на сторонах данного угла, середина которого находилась бы в точке D.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 >> [Всего задач: 26]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .