ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Дан выпуклый n -угольник ( n>3 ), никакие четыре вершины которого не лежат на одной окружности. Окружность, проходящую через три вершины многоугольника и содержащую внутри себя остальные его вершины, назовем описанной. Описанную окружность назовем граничной, если она проходит через три последовательные (соседние) вершины многоугольника; описанную окружность назовем внутренней, если она проходит через три вершины, никакие две из которых не являются соседними вершинами многоугольника. Докажите, что граничных описанных окружностей на две больше, чем внутренних. ![]() ![]() В трапеции ABCD AB – основание, AC = BC, H – середина AB. Пусть l – прямая, проходящая через точку H и пересекающая прямые AD и BD в точках P и Q соответственно. Докажите, что либо углы ACP и QCB равны, либо их сумма равна 180°. ![]() ![]() ![]() Функция F задана на всей вещественной оси, причём для любого x имеет место равенство: F(x + 1)F(x) + F(x + 1) + 1 = 0. ![]() ![]() ![]() 20 футбольных команд проводят первенство. В первый день все команды сыграли по одной игре. Во второй также все команды сыграли по одной игре. ![]() ![]() ![]() Даны три прямые a, b, c. Пусть T = SaoSboSc. Докажите, что ToT — параллельный перенос (или тождественное отображение). ![]() ![]() |
Страница: 1 2 >> [Всего задач: 9]
б) Прямые l1 и l2 пересекаются в точке O. Докажите, что Sl2oSl1 = R2
Вписанная окружность касается сторон треугольника ABC в точках A1, B1 и C1; точки A2, B2 и C2 симметричны этим точкам относительно биссектрис соответствующих углов треугольника. Докажите, что A2B2 || AB и прямые AA2, BB2 и CC2 пересекаются в одной точке.
Страница: 1 2 >> [Всего задач: 9] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |