ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На плоскости дан многоугольник A1A2...An и точка O внутри его. Докажите, что равенства

$\displaystyle \overrightarrow{OA_1}$ + $\displaystyle \overrightarrow{OA_3}$ = 2 cos$\displaystyle {\frac{2\pi}{n}}$$\displaystyle \overrightarrow{OA_2}$,    
 1$\displaystyle \overrightarrow{OA_2}$ + $\displaystyle \overrightarrow{OA_4}$ = 2 cos$\displaystyle {\frac{2\pi}{n}}$$\displaystyle \overrightarrow{OA_3}$,    
to4.5cm $\displaystyle \dotfill$    
$\displaystyle \overrightarrow{OA_{n-1}}$ + $\displaystyle \overrightarrow{OA_1}$ = 2 cos$\displaystyle {\frac{2\pi}{n}}$$\displaystyle \overrightarrow{OA_n}$.    

необходимы и достаточны для того, чтобы существовало аффинное преобразование, переводящее данный многоугольник в правильный, а точку O — в его центр.

   Решение

Задачи

Страница: << 1 2 3 4 >> [Всего задач: 19]      



Задача 58365

Тема:   [ Аффинные преобразования и их свойства ]
Сложность: 4+
Классы: 8,9

а) Докажите, что существует единственное аффинное преобразование, которое переводит данную точку O в данную точку O', а данный базис векторов  e1, e2 — в данный базис  e1', e2'.
б) Даны два треугольника ABC и A1B1C1. Докажите, что существует единственное аффинное преобразование, переводящее точку A в A1, B — в B1, C — в C1.
в) Даны два параллелограмма. Докажите, что существует единственное аффинное преобразование, которое один из них переводит в другой.
Прислать комментарий     Решение


Задача 58366

Тема:   [ Аффинные преобразования и их свойства ]
Сложность: 5
Классы: 8,9

Каждая диагональ выпуклого пятиугольника параллельна одной из его сторон. Докажите, что аффинным преобразованием этот пятиугольник можно перевести в правильный пятиугольник.
Прислать комментарий     Решение


Задача 58367

Тема:   [ Аффинные преобразования и их свойства ]
Сложность: 5
Классы: 8,9

Докажите, что если при аффинном (не тождественном) преобразовании L каждая точка некоторой прямой l переходит в себя, то все прямые вида ML(M), где в качестве M берутся произвольные точки, не лежащие на прямой l, параллельны друг другу.
Прислать комментарий     Решение


Задача 58368

Тема:   [ Аффинные преобразования и их свойства ]
Сложность: 5
Классы: 8,9

Докажите, что любое аффинное преобразование можно представить в виде композиции двух растяжений и аффинного преобразования, переводящего любой треугольник в подобный ему треугольник.
Прислать комментарий     Решение


Задача 58369

Тема:   [ Аффинные преобразования и их свойства ]
Сложность: 6
Классы: 8,9

На плоскости дан многоугольник A1A2...An и точка O внутри его. Докажите, что равенства

$\displaystyle \overrightarrow{OA_1}$ + $\displaystyle \overrightarrow{OA_3}$ = 2 cos$\displaystyle {\frac{2\pi}{n}}$$\displaystyle \overrightarrow{OA_2}$,    
 1$\displaystyle \overrightarrow{OA_2}$ + $\displaystyle \overrightarrow{OA_4}$ = 2 cos$\displaystyle {\frac{2\pi}{n}}$$\displaystyle \overrightarrow{OA_3}$,    
to4.5cm $\displaystyle \dotfill$    
$\displaystyle \overrightarrow{OA_{n-1}}$ + $\displaystyle \overrightarrow{OA_1}$ = 2 cos$\displaystyle {\frac{2\pi}{n}}$$\displaystyle \overrightarrow{OA_n}$.    

необходимы и достаточны для того, чтобы существовало аффинное преобразование, переводящее данный многоугольник в правильный, а точку O — в его центр.

Прислать комментарий     Решение

Страница: << 1 2 3 4 >> [Всего задач: 19]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .