ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Все источники
>>
Книги, журналы
>>
Прасолов В.В., Задачи по планиметрии
>>
глава 29. Аффинные преобразования
Параграфы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Докажите, что треугольники abc и a'b'c' собственно подобны, тогда и только тогда, когда
a'(b - c) + b'(c - a) + c'(a - b) = 0.
Решение |
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 49]
(b - a)/(c - a) = (b' - a')/(c' - a').
a'(b - c) + b'(c - a) + c'(a - b) = 0.
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 49] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|