ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Все источники
>>
Книги, журналы
>>
Прасолов В.В., Задачи по планиметрии
>>
глава 29. Аффинные преобразования
Параграфы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Дан не равносторонний треугольник ABC. Точки A1, B1 и C1 выбраны так, что треугольники BA1C, CB1A и AC1B собственно подобны. Докажите, что треугольник A1B1C1 равносторонний тогда и только тогда, когда указанные подобные треугольники являются равнобедренными треугольниками с углом 120o при вершинах A1, B1 и C1. Решение |
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 49]
. + . + . 1,
где a, b, c — длины сторон треугольника.
б) На сторонах BC, CA, AB взяты точки A1, B1, C1. Пусть a, b, c — длины сторон треугольника ABC, a1, b1, c1 — длины сторон треугольника A1B1C1, S — площадь треугольника ABC. Докажите, что
4S2a2b1c1 + b2a1c1 + c2a1b1.
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 49] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|