ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Перед Шариком лежит бесконечное число котлет, на каждой сидит по мухе. На каждом ходу Шарик последовательно делает две операции:

1) съедает какую-то котлету вместе со всеми сидящими на ней мухами;

2) пересаживает одну муху с одной котлеты на другую (на котлете может быть сколько угодно мух).

Шарик хочет съесть не более миллиона мух. Докажите, что он не может действовать так, чтобы каждая котлета была съедена на каком-то ходу.

Вниз   Решение


Как определить функцию  ln z  для комплексного аргумента z?

ВверхВниз   Решение


Рассмотрим все рациональные числа между нулём и единицей, знаменатели которых не превосходят n, расположенные в порядке возрастания (ряд Фарея). Пусть a/b и c/d – какие-то два соседних числа (дроби несократимы). Доказать, что  |bc – ad| = 1.

ВверхВниз   Решение


Докажите, что с помощью гомотетии с центром (0, 0) параболу 2py = x2 можно перевести в параболу y = x2.

Вверх   Решение

Задачи

Страница: 1 2 3 >> [Всего задач: 12]      



Задача 58496  (#31.029)

Тема:   [ Кривые второго порядка ]
Сложность: 3
Классы: 10

Докажите, что с помощью гомотетии с центром (0, 0) параболу 2py = x2 можно перевести в параболу y = x2.
Прислать комментарий     Решение


Задача 58497  (#31.030)

Тема:   [ Кривые второго порядка ]
Сложность: 3
Классы: 10

Окружность пересекает параболу в четырех точках. Докажите, что центр масс этих точек лежит на оси параболы.
Прислать комментарий     Решение


Задача 58498  (#31.031)

Тема:   [ Кривые второго порядка ]
Сложность: 3
Классы: 10

Две параболы, оси которых перпендикулярны, пересекаются в четырех точках. Докажите, что эти точки лежат на одной окружности.
Прислать комментарий     Решение


Задача 58499  (#31.032)

Тема:   [ Кривые второго порядка ]
Сложность: 3
Классы: 10

Докажите, что середины параллельных хорд параболы лежат на одной прямой, параллельной оси параболы.
Прислать комментарий     Решение


Задача 58500  (#31.033)

Тема:   [ Кривые второго порядка ]
Сложность: 3
Классы: 10

а) Докажите, что расстояния от любой точки параболы до фокуса и до директрисы равны.
б) Докажите, что множество точек, для которых расстояния до некоторой фиксированной точки и до некоторой фиксированной прямой равны, является параболой.
Прислать комментарий     Решение


Страница: 1 2 3 >> [Всего задач: 12]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .