ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Все источники
>>
Книги, журналы
>>
Алфутова Н.Б., Устинов А.В., Алгебра и теория чисел
>>
глава 2. Комбинаторика
Параграфы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи У Нины 7 разных шоколадных конфет, у Коли 9 разных карамелек. Сколькими способами они могут обменяться друг с другом пятью конфетами? Решение |
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 110]
На двух параллельных прямых a и b выбраны точки A1, A2, ..., Am и B1, B2, ..., Bn
соответственно и проведены все отрезки вида AiBj
Международная комиссия состоит из девяти человек. Материалы комиссии хранятся в сейфе. Сколько замков должен иметь сейф, сколько ключей для них нужно изготовить и как их разделить между членами комиссии, чтобы доступ к сейфу был возможен тогда и только тогда, когда соберутся не менее шести членов комиссии?
У Нины 7 разных шоколадных конфет, у Коли 9 разных карамелек. Сколькими способами они могут обменяться друг с другом пятью конфетами?
Докажите справедливость формулы
Сколько рациональных слагаемых содержится в разложении а) ( + )100; б) ( + )300?
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 110] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|