ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Рассмотрим прямоугольную сетку размерами m×n – шахматный город, состоящий из "кварталов", разделённых  n – 1  горизонтальными и  m – 1  вертикальными "улицами". Каково число различных кратчайших путей на этой сетке, ведущих из левого нижнего угла ("точка"  (0, 0))  в правый верхний ("точку"  (m, n))?

   Решение

Задачи

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 110]      



Задача 60390  (#02.056)

Темы:   [ Делимость чисел. Общие свойства ]
[ Разложение на множители ]
[ Итерации ]
Сложность: 3+
Классы: 7,8,9,10

Докажите, что для любого натурального a найдётся такое натуральное n, что все числа  n + 1,  nn + 1,  nnn + 1,  ...  делятся на a.

Прислать комментарий     Решение

Задача 60391  (#02.057)

Темы:   [ Сочетания и размещения ]
[ Системы точек и отрезков (прочее) ]
[ Правило произведения ]
[ Произвольные многоугольники ]
Сложность: 2+
Классы: 8,9

Сколько диагоналей имеет выпуклый:
а) 10-угольник;   б) k-угольник  (k > 3)?

Прислать комментарий     Решение

Задача 60392  (#02.058)

Тема:   [ Комбинаторная геометрия (прочее) ]
Сложность: 3+
Классы: 8,9

В выпуклом n-угольнике проведены все диагонали. Они разбивают его на выпуклые многоугольники. Возьмём среди них многоугольник с самым большим числом сторон.
Сколько сторон он может иметь?

Прислать комментарий     Решение

Задача 60394  (#02.060)

 [Анаграммы]
Темы:   [ Перестановки и подстановки (прочее) ]
[ Правило произведения ]
[ Сочетания и размещения ]
Сложность: 2+
Классы: 8,9

Анаграммой называется произвольное слово, полученное из данного слова перестановкой букв. Сколько анаграмм можно составить из слов:
а) "точка";   б) "прямая";   в) "перешеек";   г) "биссектриса";   д) "абракадабра";   е) "комбинаторика"?

Прислать комментарий     Решение

Задача 60395  (#02.061)

 [Шахматный город]
Темы:   [ Треугольник Паскаля и бином Ньютона ]
[ Сочетания и размещения ]
Сложность: 3
Классы: 9,10

Рассмотрим прямоугольную сетку размерами m×n – шахматный город, состоящий из "кварталов", разделённых  n – 1  горизонтальными и  m – 1  вертикальными "улицами". Каково число различных кратчайших путей на этой сетке, ведущих из левого нижнего угла ("точка"  (0, 0))  в правый верхний ("точку"  (m, n))?

Прислать комментарий     Решение

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 110]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .