ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Многоугольник A1A2...A2n вписанный. Про все пары его противоположных сторон, кроме одной, известно, что они параллельны. Докажите, что при n нечетном оставшаяся пара сторон тоже параллельна, а при n четном оставшаяся пара сторон равна по длине. ![]() ![]() Пусть a1, a2, ..., a10 – натуральные числа, a1 < a2 < ... < a10. Пусть bk – наибольший делитель ak, меньший ak. Оказалось, что b1 > b2 > ... > b10. ![]() ![]() ![]() Пусть имеется n подмножеств A1, ..., An конечного множества E и Докажите, что при этом
1 -
![]() ![]() |
Страница: 1 2 3 >> [Всего задач: 14]
В классе имеется a1 учеников, получивших в течение года хотя бы одну двойку, a2 учеников, получивших не менее двух двоек, ..., ak учеников, получивших не менее k двоек. Сколько всего двоек в этом классе? (Предполагается, что ни у кого нет более k двоек.)
Докажите, что при этом
1 -
Страница: 1 2 3 >> [Всего задач: 14] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |