ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Главы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Евклидово доказательство бесконечности множества простых чисел наводит на мысль определить рекуррентно числа Евклида: ![]() |
Страница: << 36 37 38 39 40 41 42 >> [Всего задач: 1255]
Пусть {pn} – последовательность простых чисел (p1 = 2, p2 = 3, p3 = 5, ...).
Докажите неравенство pn+1 < p1p2...pn (pk – k-е простое число).
Верно ли, что все числа вида p1p2...pn + 1 являются простыми? (pk – k-е простое число.)
Евклидово доказательство бесконечности множества простых чисел наводит на мысль определить рекуррентно числа Евклида:
Пусть a и n – натуральные числа, большие 1. Докажите, что если число an + 1 простое, то a чётно и n = 2k.
Страница: << 36 37 38 39 40 41 42 >> [Всего задач: 1255] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |