ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Все источники
>>
Книги, журналы
>>
Алфутова Н.Б., Устинов А.В., Алгебра и теория чисел
>>
глава 4. Арифметика остатков
Параграфы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Докажите, что для любого простого числа p > 2 числитель дроби m/n = 1/1 + 1/2 + ... + 1/p–1 делится на p. Решение |
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 209]
Докажите, что
Докажите, что для любого простого числа p > 2 числитель дроби m/n = 1/1 + 1/2 + ... + 1/p–1 делится на p.
Натуральные числа m и n таковы, что m > n,
m не делится на n и имеет от деления на n тот же остаток,
что и m + n от деления на m – n.
a, b, c – целые числа, причём a + b + c делится на 6. Докажите, что a³ + b³ + c³ тоже делится на 6.
Найдите число нулей, на которое оканчивается число 11100 – 1.
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 209] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|