Страница: 1
2 3 4 5 >> [Всего задач: 21]
Задача
60627
(#04.001)
|
|
Сложность: 2 Классы: 6,7,8
|
Пусть m и n – целые числа. Докажите, что mn(m + n) – чётное число.
Задача
60628
(#04.002)
|
|
Сложность: 3- Классы: 7,8
|
Каждый из людей, когда-либо живших на земле, сделал определённое число рукопожатий.
Докажите, что число людей, сделавших нечётное число рукопожатий, чётно.
Задача
60629
(#04.003)
|
|
Сложность: 3- Классы: 8,9,10
|
В прямоугольном треугольнике длины сторон – натуральные взаимно простые числа.
Докажите, что длина гипотенузы – нечётное число, а длины катетов имеют разную чётность.
Задача
60630
(#04.004)
|
|
Сложность: 3 Классы: 7,8
|
На доске написано 10 плюсов и 15 минусов. Разрешается стереть любые два знака и написать вместо них плюс, если они одинаковы, и минус в противном случае. Какой
знак останется на доске после выполнения 24 таких операций?
Задача
88007
(#04.005)
|
|
Сложность: 2+ Классы: 5,6,7,8
|
Из шахматной доски вырезали две клетки – a1 и h8. Можно ли оставшуюся часть доски покрыть 31 косточкой домино так, чтобы каждая косточка покрывала ровно две клетки доски?
Страница: 1
2 3 4 5 >> [Всего задач: 21]