ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи На сторонах правильного девятиугольника $ABCDEFGHI$ во внешнюю сторону построили треугольники $XAB$, $YBC$, $ZCD$ и $TDE$. Известно, что углы $X$, $Y$, $Z$, $T$ этих треугольников равны $20^{\circ}$ каждый, а среди углов $XAB$, $YBC$, $ZCD$ и $TDE$ каждый следующий на $20^{\circ}$ больше предыдущего. Докажите, что точки $X$, $Y$, $Z$, $T$ лежат на одной окружности. ![]() ![]() По какому модулю числа 1 и 5 составляют приведённую систему вычетов? ![]() ![]() ![]() Решите уравнения а) φ(x) = 2; б) φ(x) = 8; в) φ(x) = 12; г) φ(x) = 14. ![]() ![]() ![]() Докажите, что при любом простом p ![]() ![]() |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 55]
Пусть n – натуральное число, не кратное 17. Докажите, что либо n8 + 1, либо n8 – 1 делится на 17.
Докажите, что при любом простом p
Пусть для простого числа p > 2 и целого a, не кратного p, выполнено сравнение x² ≡ a (mod p). Докажите, что a(p–1)/2 ≡ 1 (mod p).
Докажите, что если x² + 1 (x – целое) делится на нечётное простое p, то p = 4k + 1.
При помощи задачи 60752 докажите, что существует бесконечно много простых чисел вида p = 4k + 1.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 55] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |