ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Автор: Ботин Д.А.

Пешеход обошёл шесть улиц одного города, пройдя каждую ровно два раза, но не смог обойти их, пройдя каждую лишь раз. Могло ли это быть?

Вниз   Решение


Теорема Эйлера. Пусть  m ≥ 1  и  (a, m) = 1.  Тогда  aφ(m) ≡ 1 (mod m).
Докажите теорему Эйлера с помощью малой теоремы Ферма
  а) в случае, когда  m = pn;
  б) в общем случае.

Вверх   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 55]      



Задача 60779  (#04.153)

 [Теорема Эйлера]
Темы:   [ Теорема Эйлера ]
[ Малая теорема Ферма ]
[ Арифметика остатков (прочее) ]
[ Треугольник Паскаля и бином Ньютона ]
Сложность: 4
Классы: 9,10,11

Теорема Эйлера. Пусть  m ≥ 1  и  (a, m) = 1.  Тогда  aφ(m) ≡ 1 (mod m).
Докажите теорему Эйлера с помощью малой теоремы Ферма
  а) в случае, когда  m = pn;
  б) в общем случае.

Прислать комментарий     Решение

Задача 60780  (#04.154)

Тема:   [ Малая теорема Ферма ]
Сложность: 4-
Классы: 8,9,10,11

Докажите, что  751 – 1  делится на 103.

Прислать комментарий     Решение

Задача 60781  (#04.155)

Темы:   [ Малая теорема Ферма ]
[ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 10,11

Пусть  p > 2  – простое число. Докажите, что  7p – 5p – 2  делится на 6p.

Прислать комментарий     Решение

Задача 60782  (#04.156)

Тема:   [ Теорема Эйлера ]
Сложность: 3+
Классы: 9,10,11

При помощи теоремы Эйлера найдите число x, удовлетворяющее сравнению  ax + b ≡ 0 (mod m),  где  (a, m) = 1.

Прислать комментарий     Решение

Задача 60783  (#04.157)

Темы:   [ Малая теорема Ферма ]
[ Арифметика остатков (прочее) ]
Сложность: 4-
Классы: 10,11

Докажите, что при любом целом a
  a)  a5a  делится на 30;
  б)  a17a  делится на 510;
  в)  a11a  делится на 66;
  г)  a73a  делится на 2·3·5·7·13·19·37·73.

Прислать комментарий     Решение

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 55]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .