ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Главы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Докажите, что если (m, 30) = 1, то число, состоящее из цифр периода дроби 1/m, делится на 9. ![]() |
Страница: << 117 118 119 120 121 122 123 >> [Всего задач: 1255]
Докажите, что если (m, 30) = 1, то число, состоящее из цифр периода дроби 1/m, делится на 9.
Периодом дроби 1/7 является число N = 142857. Оно обладает следующим свойством: сумма двух половин периода – число из одних девяток
Число N = 142857 обладает и рядом других свойств. Например: 2·142857 = 285714, 3·142857 = 428571, ..., то есть при умножении на 1, 2, 3, ..., 6 цифры циклически переставляются;
14 + 28 + 57 = 99; N2 = 20408122449, 20408 + 122449 = 142857 = N.
Обозначим через L(m) длину периода дроби 1/m. Докажите, что если (m, 10) = 1, то L(m) является делителем числа φ(m).
Пусть (m, n) = 1. Докажите, что сумма длин периода и предпериода десятичного представления дроби m/n не превосходит φ(n).
Страница: << 117 118 119 120 121 122 123 >> [Всего задач: 1255] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |