ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Все источники
>>
Книги, журналы
>>
Алфутова Н.Б., Устинов А.В., Алгебра и теория чисел
>>
глава 6. Многочлены
Параграфы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Пусть P(x) и Q(x) – многочлены, причём Q(x) не равен нулю тождественно и P(x) не делится на Q(x). Докажите, что при некотором s ≥ 1 существуют такие многочлены A0(x), A1(x), ..., As(x) и R1(x), ..., Rs(x), что degQ(x) > degR1(x) > degR2(x) > ... > degRs(x) ≥ 0, |
Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 141]
Пусть P(x) и Q(x) – многочлены, причём Q(x) не равен нулю тождественно и P(x) не делится на Q(x). Докажите, что при некотором s ≥ 1 существуют такие многочлены A0(x), A1(x), ..., As(x) и R1(x), ..., Rs(x), что degQ(x) > degR1(x) > degR2(x) > ... > degRs(x) ≥ 0,
Пусть (P(x), Q(x)) = D(x).
Найдите наибольший общий делитель многочленов P(x), Q(x) и представьте его в виде P(x)U(x) + Q(x)V(x):
Найдите (xn – 1, xm – 1).
Последовательность a0, a1, a2, ... задана условиями a0 = 0, an+1 = P(an) (n ≥ 0), где P(x) – многочлен с целыми коэффициентами,
P(x) > 0 при x ≥ 0.
Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 141] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|