ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Найдите сумму степеней порядка s всех корней уравнения  zn = 1,  где s – целое число.

   Решение

Задачи

Страница: << 158 159 160 161 162 163 164 >> [Всего задач: 1255]      



Задача 61088  (#07.024)

 [Формулы Муавра]
Тема:   [ Тригонометрическая форма. Формула Муавра ]
Сложность: 3
Классы: 9,10,11

  Докажите две формулы Муавра. Первая из них дает правило возведения в степень комплексного числа, представленного в тригонометрической форме
z = r(cos φ + isin φ):   zn = rn(cos nφ + isin nφ)  (n ≥ 1).
  Вторая позволяет вычислять все n корней n-й степени из данного числа:  

Прислать комментарий     Решение

Задача 61089  (#07.025)

Темы:   [ Алгебраические уравнения в C. Извлечение корня ]
[ Геометрия комплексной плоскости ]
[ Правильные многоугольники ]
Сложность: 2
Классы: 9,10,11

Докажите, что числа wk  (k = 0, ..., n – 1),  являющиеся корнями уравнения  wn = z,  при любом  z ≠ 0  располагаются в вершинах правильного n-угольника.

Прислать комментарий     Решение

Задача 61090  (#07.026)

Тема:   [ Алгебраические уравнения в C. Извлечение корня ]
Сложность: 3
Классы: 9,10,11

Докажите, что все корни уравнения  zn = 1  могут быть записаны в виде  1, α, α2, ..., αn–1.

Прислать комментарий     Решение

Задача 61091  (#07.027)

Темы:   [ Алгебраические уравнения в C. Извлечение корня ]
[ Геометрическая прогрессия ]
Сложность: 4-
Классы: 9,10,11

Найдите сумму степеней порядка s всех корней уравнения  zn = 1,  где s – целое число.

Прислать комментарий     Решение

Задача 61092  (#07.028)

Темы:   [ Тождественные преобразования (тригонометрия) ]
[ Комплексные числа помогают решить задачу ]
[ Тригонометрическая форма. Формула Муавра ]
Сложность: 4-
Классы: 9,10,11

Докажите равенства:

а)  

б)  

Прислать комментарий     Решение

Страница: << 158 159 160 161 162 163 164 >> [Всего задач: 1255]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .