ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи a, b, c ≥ 0. Докажите, что (a + b)(a + c)(b + c) ≥ 8abc. ![]() ![]() а) Точка O лежит внутри выпуклого n-угольника A1A2A3...An. Рассматриваются углы AiOAj при всевозможных парах (i, j) (i, j – различные натуральные числа от 1 до n). Докажите, что среди этих углов найдётся по крайней мере n – 1 не острых (прямых, тупых или развёрнутых) углов. б) То же для выпуклого многогранника, имеющего n вершин. ![]() ![]() ![]() Докажите неравенство ( ![]() ![]() |
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 48]
Докажите неравенство (
a, b, c ≥ 0. Докажите, что (a + b)(a + c)(b + c) ≥ 8abc.
Докажите для положительных значений переменных неравенство (a + b + c)(a² + b² + c²) ≥ 9abc.
Докажите неравенство для положительных значений переменных: a²(1 + b4) + b²(1 + a4) ≤ (1 + a4)(1 + b4).
Докажите, что при любых a, b, c имеет место неравенство a4 + b4 + c4 ≥ abc(a + b + c).
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 48] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |