ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В сумме  + 1 + 3 + 9 + 27 + 81 + 243 + 729  можно вычеркивать любые слагаемые и изменять некоторые знаки перед оставшимися числами с "+" на "–". Маша хочет таким способом сначала получить выражение, значение которого равно 1, затем, начав сначала, получить выражение, значение которого равно 2, затем (снова начав сначала) получить 3, и так далее. До какого наибольшего целого числа ей удастся это сделать без пропусков?

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 39]      



Задача 64506

Тема:   [ Задачи на проценты и отношения ]
Сложность: 3
Классы: 6,7,8

Вчера Саша варил суп и положил мало соли, суп пришлось досаливать. Сегодня он положил соли в два раза больше, но все равно суп пришлось досаливать, правда, уже вдвое меньшим количеством соли, чем вчера. Во сколько раз Саше нужно увеличить сегодняшнюю порцию соли, чтобы завтра не пришлось досаливать? (Каждый день Саша варит одинаковые порции супа.)

Прислать комментарий     Решение

Задача 64508

Темы:   [ Троичная система счисления ]
[ Взвешивания ]
[ Оценка + пример ]
Сложность: 3
Классы: 6,7,8

В сумме  + 1 + 3 + 9 + 27 + 81 + 243 + 729  можно вычеркивать любые слагаемые и изменять некоторые знаки перед оставшимися числами с "+" на "–". Маша хочет таким способом сначала получить выражение, значение которого равно 1, затем, начав сначала, получить выражение, значение которого равно 2, затем (снова начав сначала) получить 3, и так далее. До какого наибольшего целого числа ей удастся это сделать без пропусков?

Прислать комментарий     Решение

Задача 64534

Темы:   [ Тождественные преобразования ]
[ Разложение на множители ]
Сложность: 3
Классы: 7,8,9

Про различные числа a и b известно, что   . Найдите  .

Прислать комментарий     Решение

Задача 64535

Темы:   [ Признаки и свойства параллелограмма ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3
Классы: 8,9

В параллелограмме ABCD из вершины тупого угла B проведены высоты BM и BN, а из вершины D – высоты DP и DQ.
Докажите, что точки M, N, P и Q являются вершинами прямоугольника.

Прислать комментарий     Решение

Задача 64540

Темы:   [ Квадратные уравнения. Теорема Виета ]
[ Исследование квадратного трехчлена ]
[ Симметрия помогает решить задачу ]
Сложность: 3

На рисунке изображен график функции  y = x² + ax + b.  Известно, что прямая AB перпендикулярна прямой  y = x.
Найдите длину отрезка OC.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 39]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .